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Q1 APPLICATION OF FUSION REACTION (10 pts) 

Part 1. Energy from fusion reaction (2.0 pts) 

1.1 (a) Given the following D-D and D-T nuclear reactions: 

D-D: H1
2 + H1

2 → He2
3 + n0

1  

D-T: H1
2 + H1

3 → He2
4 + n0

1  

The 𝑄-value for the D-D reaction is: 

𝑄 = [(𝑚𝐴 + 𝑚𝐵) − (𝑚𝐶 + 𝑚𝐷)]𝑐2  

𝑄 = [(2.014102 u + 2.014102 u) − (3.016029 u + 1.008665 u)](931.5 MeV/u)  

𝑄 = (0.003510 u)(931.5 MeV/u) = 𝟑. 𝟐𝟕𝟎 𝐌𝐞𝐕  

The 𝑄-value for the D-T reaction is: 

𝑄 = [(𝑚𝐴 + 𝑚𝐵) − (𝑚𝐶 + 𝑚𝐷)]𝑐2  

𝑄 = [(2.014102 u + 3.016049 u) − (4.002603 u + 1.008665 u)](931.5 MeV/u)  

𝑄 = (0.018883 u)(931.5 MeV/u) = 𝟏𝟕. 𝟓𝟗 𝐌𝐞𝐕  

1.1 (a) D-D: 3.270 MeV  

D-T: 17.59 MeV  

0.1 pt 

0.1 pt 

 

1.1 (b) The 𝑄-value is equal to the sum of the kinetic energy of the neutron (𝐸𝑛) and the 

other product (𝐸𝑥): 

𝑄 = 𝐸𝑛 + 𝐸𝑥 =
1

2
𝑚𝑛𝑣𝑛

2 +
1

2
𝑚𝑥𝑣𝑥

2  

Since momentum is conserved, and it is initially zero, then: 

𝑚𝑛𝑣𝑛 = 𝑚𝑥𝑣𝑥, from which we get: 

𝑣𝑥 =
𝑚𝑛𝑣𝑛

𝑚𝑥
 

Substituting the expression for 𝑣𝑥 into the first equation: 

𝑄 = 𝐸𝑛 + 𝐸𝑥 =
1

2
𝑚𝑛𝑣𝑛

2 +
1

2
𝑚𝑥 (

𝑚𝑛𝑣𝑛

𝑚𝑥
)

2

 

𝑄 =
1

2
𝑚𝑛𝑣𝑛

2 (1 +
𝑚𝑛

𝑚𝑥
) = 𝐸𝑛 (

𝑚𝑥 + 𝑚𝑛

𝑚𝑥
) 

Solving for 𝐸𝑛, we obtain: 
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𝑬𝒏 = (
𝒎𝒙

𝒎𝒙 + 𝒎𝒏
) 𝑸 

1.1 (b) 𝐸𝑛 = (
𝑚𝑥

𝑚𝑥 + 𝑚𝑛
) 𝑄 0.6 pts 

 

1.1 (c) From the expression obtained in 1.1 (b) and the 𝑄-values calculated from 1.1 (a), 

the energy of neutrons produced from D-D reactions is: 

𝐸𝑛 = (
𝑚𝐻𝑒3

𝑚𝐻𝑒3 + 𝑚𝑛
) 𝑄 

𝐸𝑛 = (
3.016029

3.016029 + 1.008665
) 3.270 MeV = 𝟐. 𝟒𝟓𝟎 𝐌𝐞𝐕 

While neutrons for the D-T reaction will have an energy of: 

𝐸𝑛 = (
𝑚𝐻𝑒4

𝑚𝐻𝑒4 + 𝑚𝑛
) 𝑄 

𝐸𝑛 = (
4.002603

4.002603 + 1.008665
) 3.270 MeV = 𝟏𝟒. 𝟎𝟓 𝐌𝐞𝐕 

1.1 (c) D-D: 𝐸𝑛 = 2.450 MeV 

D-T: 𝐸𝑛 = 14.05 MeV 

0.1 pt 

0.1 pt 

 

1.2 (a)  

For the D-T reaction:  

Total mass of reactants: 𝑚𝐷 + 𝑚𝑇 = 2.014102 u + 3.016049 u = 5.030151 u 

Given the Q-value calculated from 1.1 (b), 𝑄𝐷𝑇 = 17.59 MeV, the energy per unit mass of 

D-T fusion reactants is then: 

𝐸

𝑚
=

17.59 MeV

5.030151 u
 

= 3.496913
MeV

u
 (

1 kWh

2.24694 × 1019 MeV
) (

1 u

1.660565 × 10−27kg
) 

= 9.372 × 107 kWh/kg 

For a fusion plant with 35% efficiency, the extracted energy per unit mass is just: 

0.35 (
𝐸

𝑚
) = 0.35(9.372 × 107 kWh/kg) = 3.280 × 107 kWh/kg 

Then for 𝐸1 = 3600 kWh, the corresponding D-T reactant mass is: 
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𝑚1 =
𝐸1

𝐸
𝑚

=
3,600 kWh

3.280 × 107 kWh/kg
= 𝟏. 𝟎𝟗𝟕 × 𝟏𝟎−𝟒 𝐤𝐠 

For the D-D reaction:  

Total mass of reactants: 2 ∙ 𝑚𝐷 = 2 ∙ 2.014102 u = 4.028204 u 

Given the Q-value calculated from 1.1 (b), 𝑄𝐷𝐷 = 3.270 MeV, the energy per unit mass of 

DD fusion reactants is then: 

𝐸

𝑚
=

3.270 MeV

4.028204 u
 

= 0.811776
MeV

u
 (

1 kWh

2.24694 × 1019 MeV
) (

1 u

1.660565 × 10−27kg
) 

= 2.176 × 107 kWh/kg 

For a fusion plant with 35% efficiency, the extracted energy per unit mass is just: 

0.35 (
𝐸

𝑚
) = 0.35(2.176 × 107 kWh/kg) = 7.615 × 106 kWh/kg 

Then for 𝐸1 = 3,600 kWh, the corresponding DD reactant mass is: 

𝑚1 =
𝐸1

𝐸
𝑚

=
3,600 kWh

7.615 × 106 kWh/kg
= 𝟒. 𝟕𝟐𝟖 × 𝟏𝟎−𝟒 𝐤𝐠 

1.2 (a) D-T: 1.098 × 10−4 kg    (1.087 × 10−4 − 1.108 × 10−4 kg )  

D-D: 4.728 × 10−4 kg    (4.680 × 10−4 − 4.775 × 10−4 kg ) 

Note: Answers within ±1% of these values are acceptable. 

0.25 pts 

0.25 pts 

 

1.2 (b) Given the following values: 

𝐸𝑓 = 200 MeV  

𝑚𝑟𝑒𝑎𝑐𝑡 = 𝑚𝑈235 + 𝑚𝑛𝑒𝑢𝑡𝑟𝑜𝑛 = 235.044 u + 1.008665 u = 236.053 u 

𝐸

𝑚
=

200 MeV

236.053 u
 

= 0.847269
MeV

u
 (

1 kWh

2.24694 × 1019 MeV
) (

1 u

1.660565 × 10−27kg
) 

= 2.271 × 107 kWh/kg 

For a fission plant with 30% efficiency, the extracted energy per unit mass is just: 
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0.30 (
𝐸

𝑚
) = 0.30(2.271 × 107 kWh/kg) = 6.812 × 106 kWh/kg 

Then for 𝐸1 = 3600 kWh, the corresponding fission reactant mass is: 

𝑚1 =
𝐸1

𝐸
𝑚

=
3600 kWh

6.812 × 106 kWh/kg
= 𝟓. 𝟐𝟖𝟓 × 𝟏𝟎−𝟒 𝐤𝐠 

1.2 (b) 5.285 × 10−4 kg     (5.232 × 10−4 − 5.337 × 10−4 kg )  

Note: Answers within ±1% of this value are acceptable. 

0.25 pts 

 

1.2 (c) For bituminous coal: 

𝐸

𝑚
= 31

kJ

g
 (

1 eV

1.60218 × 10−22 kJ
) (

1 MeV

1 × 106 eV
) (

1 kWh

2.24694 × 10.19 MeV
) (

1,000 g

1 kg
)

= 8.611 kWh/kg 

Then for 𝐸1 = 3600 kWh, the corresponding coal mass is: 

𝑚1 =
𝐸1

𝐸
𝑚

=
3600 kWh

8.611 kWh/kg
= 𝟒. 𝟏𝟖𝟏 × 𝟏𝟎𝟐 𝐤𝐠 

1.2 (c) 4.181 × 102 kg  0.15 pt 

 

4.181 × 102 kg 

1.098 × 10−4 kg
= 𝟑. 𝟖𝟎𝟖 × 𝟏𝟎𝟔 

1.2 (d) 3.808 × 106     (3.769 × 106 − 3.846 × 106  )  

Note: Answers within ±1% of this value are acceptable. 

0.1 pt 

 

Part 2. Tritium production (2.0 pts) 

2.1  Given the nuclear reaction: 

Li3
7 + n0

1 → He2
4 + H + n0

1
1
3   

and the expression for conservation of energy: 

𝐸𝐿𝑖 + 𝐸𝑛 → 𝐸𝐻𝑒 + 𝐸𝐻 + 𝐸𝑛′       (1) 

where the energy of the particle 𝑖 is the sum of its kinetic and rest mass energies: 

 𝐸𝑖 = 𝐾𝐸𝑖 + 𝑚𝑖𝑐2       (2) 
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The minimum incident neutron energy or its threshold energy is calculated by assuming 

that the kinetic energies of the reaction products are zero. Assuming also that the target 

Li-7 is at rest, equation (1) becomes: 

𝑚𝐿𝑖𝑐2 +
1

2
𝑚𝑛𝑣𝑛

2 + 𝑚𝑛𝑐2 = 𝑚𝐻𝑒𝑐2 + 𝑚𝐻𝑐2 + 𝑚𝑛𝑐2     (3) 

Combining all rest energy terms in the RHS: 

1

2
𝑚𝑛𝑣𝑛

2  = −(𝑚𝐿𝑖𝑐2 + 𝑚𝑛𝑐2) + (𝑚𝐻𝑒𝑐2 + 𝑚𝐻𝑐2 + 𝑚𝑛𝑐2)     (4) 

1

2
𝑚𝑛𝑣𝑛

2 = −[(𝑚𝐿𝑖 + 𝑚𝑛) − (𝑚𝐻𝑒 + 𝑚𝐻 + 𝑚𝑛)]𝑐2   (5) 

𝐾𝐸𝑛 = −[(𝑚𝐿𝑖 + 𝑚𝑛) − (𝑚𝐻𝑒 + 𝑚𝐻 + 𝑚𝑛)]𝑐2    (6) 

The RHS of equation (6) is the negative of the 𝑄-value of the reaction, hence: 

𝐾𝐸𝑛 = −𝑄  

Therefore, the minimum incident energy is determined from the 𝑄-value for the reaction:  

𝐾𝐸𝑛 = −𝑄 = −[(𝑚𝐿𝑖 + 𝑚𝑛) − (𝑚𝐻𝑒 + 𝑚𝐻 + 𝑚𝑛)]𝑐2 

𝐾𝐸𝑛 = −[(7.016003 u + 1.008665 u) − (4.002603 u + 3.016029 u + 1.008665 u)] (931.5 MeV/

u)  

𝐾𝐸𝑛 = −(−0.002649) (931.5
MeV

u
) = 𝟐. 𝟒𝟔𝟖 𝐌𝐞𝐕  

2.1 2.468 MeV     (2.443 − 2.493 MeV )  

Note: Answers within ±1% of this value are acceptable. 

0.8 pts 

 

2.2 (a) Combining the following equations: 

𝑅 = 𝜎𝑁𝜙𝑉 and 𝑁 =
𝜌𝑁𝐴

𝑚
=

𝑀𝑁𝐴

𝑉𝑚
 ; where 𝜌 =

𝑀

𝑉
 

We get: 𝑹 =
𝝈𝑴𝑵𝑨𝝓 

𝒎
 

Given the following: 

𝑀𝐿𝑖 = 1,000 g    

𝑁𝐴 = 6.02214 × 1023 mol−1  

𝜎 = 940 barn = 9.4 × 10−22cm2  

𝜙 = 3.5 × 1014 cm−2s−1  

𝑚𝐿𝑖6 = 6.015122 u or g/mol  

We calculate the mass of Li-6 from 1000 g of natural Lithium. 
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𝑚𝐿𝑖6 = 1000 g ×
1 mol Lithium

0.0485 × 6.015122 g +  0.9515 × 7.016003 g
× 0.0485 ×

6.015122 g Li − 6

1 mol Li − 6

= 41.87084 g 

Applying the formula gives: 

𝑅 =
𝑀𝑁𝐴𝜎𝜙 

𝑚
=

(41.87084 g)(6.02214 × 1023 mol−1)(9.4 × 10−22cm2)(3.5 × 1014 cm−2s−1)

6.015122 g/mol 

= 1.3791588 × 1018 s−1 

In 24 hrs (86,400 s), the total H1
3  nuclides produced is then: 

# H 1
3 = 1.3791588 × 1018 s−1(86,400 s) = 1.1915932 × 1023 nuclides  

Since 𝑚𝐻3 = 3.016049 u or g/mol, then the mass in grams is:  

𝑀𝐻3 =
(# H 1

3
) (𝑚𝐻3)

𝑁𝐴
=

(1.1915932 × 1023)(3.016049 g/mol)

6.02214 × 1023 mol−1
= 𝟎. 𝟓𝟗𝟕 𝐠 

2.2 (a) 0.597 g of H 1
3      (0.590 − 0.603 g) 

Note: Answers within ±1% of this value are acceptable. 

1.0 pt 

 

2.2 (b) By ratio and proportion, we obtain: 

𝑀𝐿𝑖
′ = 𝑀𝐻3

′ (
𝑀𝐿𝑖

𝑀𝐻3
) = 1.50 × 105 g (

1×103g

0.597 g
) = 𝟐. 𝟓𝟏𝟑 × 𝟏𝟎𝟓 𝐤𝐠  

2.2 (b) 2.513 × 105 kg    (2.488 × 105 − 2.538 × 105 kg )    

Note: Answers within ±1% of this value are acceptable. 

0.2 pts 

 

Part 3. Overcoming the Coulomb barrier (2.5 pts) 

3.1 (a) We first calculate the distance between two deuterons using the empirical formula 

for the radius of the nuclei: 𝑟 = 𝑟0𝐴1/3 

Given that 𝐴𝐻2 = 2: 

𝑑𝐷𝐷 = 2𝑟 = 2 ∙ 𝑟0𝐴1/3 = (2)(1.2 × 10−15m)(21/3) = 3.024 × 10−15 m   

Then, given 𝑞 = 1.60218 × 10−19 C, 𝑘𝑒 = 8.98755 × 109 N ∙ m2/C2 

𝑈 =
𝑘𝑒𝑞2

𝑑𝐷𝐷
=

(8.98755 × 109 N ∙
m2

C2 ) (1.60218 × 10−19 C)2 

3.024 × 10−15 m
= 𝟕. 𝟔𝟑𝟎 × 𝟏𝟎−𝟏𝟒 𝐍 ∙ 𝐦 

3.1 (a) 7.630 × 10−14 N ∙ m    (7.553 × 10−14 − 7.706 × 10−14 N ∙ m )  0.8 pts 
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Note: Answers within ±1% of this value are acceptable. Alternate 

unit is joules or J. 

 

3.1 (b) We first calculate the distance between a deuteron and a triton Given that 𝐴𝐻2 = 2 

and 𝐴𝐻3 = 3: 

𝑑𝐷𝑇 = 𝑟𝐻2 + 𝑟𝐻3 = 𝑟0 (𝐴𝐻2
1/3

+ 𝐴𝐻3
1/3

) = (1.2 × 10−15m)(21/3 + 31/3) = 3.243 × 10−15 m   

Then, given 𝑞 = 1.60218 × 10−19 C, 𝑘𝑒 = 8.98755 × 109 N ∙ m2/C2 

𝑈 =
𝑘𝑒𝑞2

𝑑𝐷𝑇
=

(8.98755 × 109 N ∙
m2

C2 ) (1.60218 × 10−19 C)2 

3.243 × 10−15 m
= 𝟕. 𝟏𝟏𝟓 × 𝟏𝟎−𝟏𝟒 𝐍 ∙ 𝐦 

3.1 (b) 7.115 × 10−14 N ∙ m    (7.044 × 10−14 − 7.186 × 10−14 N ∙ m )  

Note: Answers within ±1% of this value are acceptable. Alternate 

unit is joules or J. 

0.8 pts 

 

3.2 (a) From equation (5), the expression for temperature with 𝐸̅ =
1

2
𝑈 is: 

𝑇 =
2𝐸̅

3𝑘𝐵
=

𝑈

3𝑘𝐵
 

Given 1 J =  6.24150 × 1018 eV and 𝑘𝐵 = 8.61733 × 10−5 eV/K 

For DD: 𝑈 = 7.628 × 10−14  J (
6.24150×1018 eV

1J
) = 4.762 × 106eV 

𝑇 =
4.762 × 106eV

3(8.61733 × 10−5 eV/K)
= 𝟏. 𝟖𝟒𝟐 × 𝟏𝟎𝟗 𝐊 

 

For DT: 𝑈 = 7.114 × 10−13 J (
6.24150×1018 eV

1J
) = 4.440 × 106eV 

𝑇 =
4.440 × 106eV

3(8.61733 × 10−5 eV/K)
= 𝟏. 𝟕𝟏𝟖 × 𝟏𝟎𝟗 𝐊 

3.2 (a) DD: 1.842 × 109 K     (1.824 × 109 − 1.860 × 109 K ) 

DT : 1.718 × 109 K     (1.701 × 109 − 1.735 × 109 K ) 

Note: Answers within ±1% of these values are acceptable. 

0.3 pts 

0.3 pts 

 

Given the actual ignition temperature for D-D: 4.5 × 108 K, the % difference is: 
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%𝑑𝑖𝑓𝑓 =
|4.5 × 108 K − 1.842 × 109K|

4.5 × 108 K + 1.842 × 109K
2

× 100 = 121.5% 

 

Given the actual ignition temperature for D-D: 4.5 × 108 K, the % difference is: 

%𝑑𝑖𝑓𝑓 =
|1.5 × 108 K − 1.718 × 109K|

1.5 × 108 K + 1.718 × 109K
2

× 100 = 167.9% 

 

3.2 (b) DD: 121.5%      (120.3 − 122.7%) 

DT : 167.9%      (166.2 − 169.6%) 

Note: Answers within ±1% of these values are acceptable  

0.15 pts 

0.15 pts 

 

Part 4. Portable neutron generators (3.5 pts) 

 

4.1 The surface density (𝑁𝑠) is related to the atom number density (𝑁) as follows: 

𝑁𝑠 = 𝑁 ∙ 𝑙 =
𝜌𝑁𝐴

𝑚
∙ 𝑙 

where 𝑙 is the sample thickness, which is given in the problem (0.1 cm). 

For TiD1.64, given  𝜌 = 3.92 g/cm3 and 𝑚 = 51.170127 u, the surface density is: 

𝑁𝑠 = 𝑁 ∙ 𝑙 =
𝜌𝑁𝐴

𝑚
∙ 𝑙 =

3.92
g

cm3 (6.02214 × 1023 mol−1)

51.170127
g

mol

∙ (0.1 cm) = 4.613 × 1021 cm−2 

Multiplying the value by 1.64 gives the number of D atom per unit area: 

𝑁𝑠,𝐷 = 1.64 ∙ 4.613 × 1021 cm−2 = 𝟕. 𝟓𝟔𝟔 × 𝟏𝟎𝟐𝟏 𝐜𝐦−𝟐 

 

For TiT1.64, given  𝜌 = 4.03 g/cm3 and 𝑚 = 52.813320 u, the surface density is: 

𝑁𝑠 = 𝑁 ∙ 𝑙 =
𝜌𝑁𝐴

𝑚
∙ 𝑙 =

4.03
g

cm3 (6.02214 × 1023 mol−1)

52.813320
g

mol

∙ (0.1 cm) = 4.595 × 1021 cm−2 

Multiplying the value by 1.64 gives the number of T atom per unit area: 

𝑁𝑠,𝑇 = 1.64 ∙ 4.595 × 1021 cm−2 = 𝟕. 𝟓𝟑𝟔 × 𝟏𝟎𝟐𝟏 𝐜𝐦−𝟐 
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4.1 (a) D: 𝑁𝑠,𝐷 = 7.566 × 1021 cm−2 (7.490 × 1021 − 7.642 × 1021 cm−2) 

(b) T: 𝑁𝑠,𝑇 = 7.536 × 1021 cm−2 (7.461 × 1021 − 7.612 × 1021 cm−2) 

Note: Answers within ±1% of these values are acceptable 

0.7 pts 

0.7 pts 

 

4.2 By combining the following equations: 

𝑆 = 𝑁𝑠𝜎𝜑  

𝜑 =
𝐼

𝑞
∙ 𝑎 

The expression for the deuteron beam current can be written as: 

𝐼 =
𝑆𝑞

𝑁𝑠𝜎𝑎
 

Given the following: 

Neutron generator parameter: 𝑎 = 6.25 × 10−4 

Deuteron charge: 𝑞 = 1.60218 × 10−19 C 

𝑆 = 1 × 107n/s  

From 4.1(a), 𝑁𝑠,𝐷 = 7.566 × 1021 cm−2 

 

For D-D: 𝜎𝐷−𝐷 = 16.9 mb = 1.69 × 10−26 cm2 

𝐼 =
𝑆𝑞

𝑁𝑠,𝐷𝜎𝐷−𝐷𝑎
 

𝐼 =
(1 × 107s−1)(1.60218 × 10−19 C)

(7.566 × 1021 cm−2)(1.69 × 10−26 cm2)(6.25 × 10−4)
= 𝟐. 𝟎𝟎𝟓 × 𝟏𝟎−𝟓𝐀  

 

For D-T: 𝜎𝐷−𝑇 = 293 ∙ 16.9 mb = 4.9517 × 10−24 cm2 

𝐼 =
𝑆𝑞

𝑁𝑠,𝑇𝜎𝐷−𝑇𝑎
 

𝐼 =
(1 × 107s−1)(1.60218 × 10−19 C)

(7.536 × 1021 cm−2)(4.9517 × 10−24 cm2)(6.25 × 10−4)
= 𝟔. 𝟖𝟔𝟗 × 𝟏𝟎−𝟖𝐀  

 

4.2 D-D: 2.005 × 10−5A      (1.985 × 10−5 − 2.025 × 10−5 A )  

D-T : 6.869 × 10−8A     (6.801 × 10−8 − 6.938 × 10−8 A )  

Note: Answers within ±1% of these values are acceptable. 

0.7 pts 

0.7 pts 
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4.3 (a)  

𝜙 =
𝑆

4𝜋𝑟2
=

1 × 107n/s

(4)(𝜋)(3 cm)2
= 𝟖. 𝟖𝟒𝟐 × 𝟏𝟎𝟒 𝐧/𝐜𝐦𝟐𝐬 

4.3 (a) 8.842 × 104 n/cm2 ∙ s      (8.754 × 104 − 8.930 × 104 n/cm2 ∙ s ) 

Note: Answer within ±1% of this value is acceptable. 

 

0.2 pts 

 

4.3 (b)  

Combining the expression for emerging flux at the collimator outlet: 

𝜙 =
𝜙0𝐴

4𝜋𝐿2
 

      And the area for a circular collimator: 

    𝐴 =
𝜋𝐷2

4
 

      We obtain:  

𝜙 =
𝜙0𝐷2

16𝐿2
 

      The ratio of the fluxes at the outlet apertures of the two collimators 

𝜙1

𝜙2
=

𝜙0𝐷1
2

16𝐿2

𝜙0𝐷2
2

16𝐿2

=
𝐷1

2

𝐷2
2
 

4.3 (b) 
𝜙2 =

𝐷2
2

𝐷1
2

𝜙1 = (
𝐷2

𝐷1
)

2

𝜙1 
0.5 pts 
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Q2 STERILE INSECT TECHNIQUE FOR MOSQUITOES (10 pts) 

Part 1. Absorbed Dose Measurement Using Fricke Dosimeter (4.5 points) 

1.1 The power can be expressed as the product of activity and energy 

𝑃 (𝑀𝑒𝑉 𝑠−1) = 𝐴 × 𝐸(𝑀𝐵𝑞 ∙ 𝑀𝑒𝑉) × 
106𝐵𝑞

1 𝑀𝐵𝑞
×

1 𝑠−1

1 𝐵𝑞
 

𝑃 (𝑀𝑒𝑉 𝑠−1) = 106 𝐴𝐸 

We are asked to express it in 𝐽 ℎ−1: 

𝑃 (𝐽 ℎ−1) = 106 𝐴𝐸 (
𝑀𝑒𝑉

𝑠
) × (

106𝑒𝑉

1 𝑀𝑒𝑉
) × (

1 𝐽

6.2415 ×  1018𝑒𝑉
) × (

3600 𝑠

1 ℎ
) 

𝑃 (𝐽 ℎ−1) = 5.768 × 10−4𝐴𝐸  

 

1.1 𝑃 (𝐽 ℎ−1) = 5.768 × 10−4𝐴𝐸  0.5 pt. 

 

1.2 Because the gamma source is isotropic, the energy that is emitted over the surface of 

the sphere of radius r meters, which has an area of 4𝜋𝑟2 is:  

𝑃 (𝐽 ℎ−1𝑚−2) =
5.768 × 10−4𝐴𝐸

4𝜋𝑟2
 

𝑃 (𝐽 ℎ−1𝑚−2) =
1.442 × 10−4𝐴𝐸

𝜋𝑟2
 

1.2 𝑃 (𝐽 ℎ−1𝑚−2) =
1.442 × 10−4𝐴𝐸

𝜋𝑟2
  𝑜𝑟   

4.590 × 10−5𝐴𝐸

𝑟2
 

1 pt. 

 

1.3 The activity is 8000 𝐶𝑖, and this is equivalent to 2.96 × 108 𝑀𝐵𝑞, while the mass 

attenuation coefficient, in 
𝑚2

𝑘𝑔
, is 7.2 × 10−3. To determine the dose rate: 

𝐷𝑅 (𝐺𝑦 ℎ−1) =
1.442 × 10−4𝐴𝐸

𝜋𝑟2
 (

𝜇

𝜌
) 

𝐷𝑅 (𝐺𝑦 ℎ−1) =
1.442 × 10−4 × 2.96 × 108 × 1.25

𝜋 × 0.52
 (7.2 × 10−3) 

 

𝐷𝑅 (𝐺𝑦 ℎ−1) = 489.11 𝐺𝑦 ℎ−1 
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In 10 minutes, the total dose absorbed is 

𝐷 (𝐺𝑦) = 489.11 
𝐺𝑦

ℎ
× 10 𝑚𝑖𝑛 ×

1 ℎ

60 𝑚𝑖𝑛
 

𝐷 (𝐺𝑦) = 81.52 𝐺𝑦 

 

1.3 𝐷𝑅 (𝐺𝑦 ℎ−1) = 489.1 𝐺𝑦 ℎ−1 

 

𝐷 (𝐺𝑦) = 81.52 𝐺𝑦 

1 pt 

 

0.5 pt 

  

1.4 

𝐷 =
∆𝑂𝐷

𝜀𝐺(𝐹𝑒3+)𝜌𝑙
 

𝐺(𝐹𝑒3+) =
∆𝑂𝐷

𝜀𝐷𝜌𝑙
 

𝐺(𝐹𝑒3+) =
(0.184 − 0.003)

2174
𝐿

𝑚𝑜𝑙 𝑐𝑚
× 81.5

𝐽
𝑘𝑔

× 1.024
𝑔

𝑐𝑚3 × 1𝑐𝑚 ×
1000𝑐𝑚3

1𝐿 ×
1𝑘𝑔

1000𝑔 ×
1𝑚𝑜𝑙

106𝜇𝑚𝑜𝑙

 

𝐺(𝐹𝑒3+) = 0.9974 𝜇𝑚𝑜𝑙 𝐽−1 

1.4 𝐺(𝐹𝑒3+) = 0.9974 𝜇𝑚𝑜𝑙 𝐽−1 0.5 pt. 

 

1.5 Given that all the Co-60 gamma ray photons deposit 300 keV into the Fricke dosimeter 

per interaction. The number of interactions needed to provide the required absorbed 

doses can be calculated from the total energy deposited to the dosimeter and the 

energy deposited per interaction 

𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 =  
𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
 

For 10 Gy, 

𝑁𝑜. 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 =  
10 

𝐽
𝑘𝑔

× 1𝑔 ×
1𝑘𝑔

1000𝑔

300
𝑘𝑒𝑉

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ×
1000 𝑒𝑉

1 𝑘𝑒𝑉
×

1𝐽
6.2415 × 1018𝑒𝑉

 

𝑵𝒐. 𝒐𝒇 𝒑𝒉𝒐𝒕𝒐𝒏 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒔 = 𝟐. 𝟎𝟖𝟎𝟓 × 𝟏𝟎𝟏𝟏 
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Following the same calculation,  

Absorbed dose No. of photon interactions 

10 2.081 x 1011 

20 4.161 x 1011 

30 6.242 x 1011 

40 8.322 x 1011 

50 1.040 x 1012 

 

1.5 Absorbed dose No. of photon interactions 

10 2.081 x 1011 

20 4.161 x 1011 

30 6.242 x 1011 

40 8.322 x 1011 

50 1.040 x 1012 
 

1 pt. 

(0.2 pt. 

each) 

 

Part 2. Egg Hatch and Dose in SIT (3.5 points) 

2.1. Given the equation for egg hatch and observed hatch of 40%, find the dose. 

Egg hatch (%) = 85% × ex p(−0.065 Dose) 

40% = 85% × exp(−0.065 Dose) 

Dose =
ln(40 ÷ 85)

−0.065
  

2.1 Dose = 11.60 𝐺𝑦  0.5 pt. 

 

2.2 The dose 11.60 Gy with 40% egg hatch was administered for 10 minutes, find the time 

it took for irradiation to result to 1% egg hatch. 

Egg hatch (%) = 85% × ex p(−0.065 Dose) 

1% = 85% × exp(−0.065 Dose) 
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Dosenew =
ln(1 ÷ 85)

−0.065
 

Dosenew = 68.35 Gy  

Timenew = (10 min) × (
68.35 Gy

11.60 Gy
) 

2.2 Timenew = 58.94 min   or   58 min & 56 sec. 1.0 pt. 

 

2.3 Given the equation for the shielded dose, calculate the required lead thickness to 

increase the egg hatch from 0.1% to 2%. Use a mass attenuation coefficient, 
μ

𝜌
, of 0.058 

cm²/g for these rays in lead (ρ=11.3 g/cm³). 

D0 =
ln(0.1 ÷ 85)

−0.065
= 103.77 Gy 

D𝑖 =
ln(2 ÷ 85)

−0.065
= 57.68 Gy 

D𝑖 = D0 exp(− (
μ

𝜌
) ρx) 

𝑥 =
ln(D0 ÷ D𝑖)

(
μ
𝜌) ρ

=
ln(103.77 ÷ 57.68)

(0.058 cm²/g)(11.3 g/cm³)
  

2.3 x = 0.8960 cm 1.0 pt. 

 

2.4 (a) Calculate the effective mass attenuation coefficient of stainless steel. 

(
𝜇

𝜌
)

𝑆𝑆

= ∑ 𝑤𝑖 × (
𝜇

𝜌
)

𝑖𝑖

 

(
𝜇

𝜌
)

𝑆𝑆

= (0.0008)(0.0568) + (0.02)(0.0521) + (0.00045)(0.0551) + (0.0003)(0.0568)

+ (0.01)(0.0567) + (0.19)(0.0528) + (0.095)(0.0548) + (0.68345)(0.0534)

= 0.05343 

2.4 (a) 0.05343 cm²/g 0.5 pt. 

 

2.4 (b) Calculate how many 1-mm thick stainless-steel sheets are needed to achieve the 

desired shielding effect that keeps the egg hatch rate close to 2%. 
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𝑥 =
ln(D0 ÷ D𝑖)

(
μ
𝜌

) ρ
=

ln(103.77 ÷ 57.68)

(0.05343 cm²/g)(8.03 g/cm³)
= 1.369 cm = 13.69 mm 

2.4 (b) 14 sheets 0.5 pt. 

 

Part 3. Competitiveness and Dose in SIT (2.0 points) 

3.1 Given the equation for male competitiveness as a function of dose, find C when dose 

is 40 Gy. 

C =
1

1 + exp(−4.7 + [3.6 × log(𝐷𝑜𝑠𝑒)])
 

C =
1

1 + exp(−4.7 + [3.6 × log(40)])
 

3.1 C = 0.2559 1.0 pt. 

 

3.2 Given that a competitiveness (C) of 0.5 is desired, find the irradiation dose required 

to achieve this. 

C =
1

1 + exp(−4.7 + [3.6 × log(Dose)])
 

1 + exp(−4.7 + [3.6 × log(Dose)]) =
1

C
 

exp(−4.7 + [3.6 × log(Dose)]) =
1

C
− 1 

−4.7 + [3.6 × log(Dose)] = ln (
1

C
− 1) 

3.6 × log(Dose) = ln (
1

C
− 1) + 4.7 

log(Dose) =
[ln (

1
C − 1) + 4.7]

3.6
 

Dose = 10^
[ln (

1
C − 1) + 4.7]

3.6
 

Dose = 10^
[ln (

1
0.5

− 1) + 4.7]

3.6
 

 

3.2 Dose = 20.21 Gy 1.0 pt. 
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Q3 PARTICLES FOR DESTROYING CANCER (10 pts) 

Part 1. Proton Stopping Power, Range, and Dose (5.0 pts) 

1.1  

1.1 Stopping power is defined as the rate of energy loss per unit 

path length by a particle traveling through a material.  

 

LET is the average energy deposited/transferred to the material 

per unit path length. 

0.2 pts 

 

 

0.2 pts 

 

1.2  

1.2 

 

 

0.2 pts 

 

0.2 pts 

 

0.2 pts 

 

1.3 

The Bethe-Bloch equation for the mass stopping power of protons at 1-200 MeV energy 

range is given by: 

𝑺

𝝆
= − 

𝒅𝑬

𝝆𝒅𝒙
=  

𝟓. 𝟎𝟖 ×  𝟏𝟎−𝟑𝟏𝒛𝟐𝒏

𝝆𝜷𝒗
𝟐

[𝑭(𝜷𝒗) − 𝒍𝒏 (𝑰)] 

where: 

𝛽𝑣  is the velocity of the incident particle 𝑣 relative to the speed of light 𝑐 

𝐼 is the excitation energy of a target material (for water, 𝐼 = 74.6 𝑒𝑉) 

𝑧 is the charge of the incident particle (for proton, 𝑧 = +1) 

𝑛 is the number of electrons in a material per unit volume (in 𝑚3) calculated using the 

following equation: 

𝒏 =
𝑵𝒂𝒁𝝆

𝑨
 

Electron 

Photon 

Proton 
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where: 

𝑁𝐴 is the Avogadro’s number (𝑁𝐴 = 6.02214 × 1023 𝑚𝑜𝑙−1) 

 𝜌 is the density of a material (for water, 𝜌 = 1.000 𝑔 ∙ 𝑐𝑚−3) 

𝑍/𝐴 is the ratio of atomic number to the mass number of a material (for water, 
𝑍

𝐴
=

1+1+8

1+1+16
=

10

18
= 0.555555555) 

𝑛 =
𝑁𝑎𝜌𝑍

𝐴
=  (6.02214 × 1023)(1  𝑔 ∙ 𝑐𝑚−3 )(0.55556) ×

1003 𝑐𝑚3

13 𝑚3
= 3.345633333 × 1029 

𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
=  

(5.08 × 10−31)(12)(3.345633333 × 1029)

𝜌𝛽𝑣
2

[𝐹(𝛽𝑣) − 𝑙𝑛(74.6)]

=
0.169958173

𝜌𝛽𝑣
2

[𝐹(𝛽𝑣) − 4.312140507]     

1.3 𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
=

0.170

𝜌𝛽𝑣
2 [𝐹(𝛽𝑣) − 4.31] 

 

Other acceptable answer: 

𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
=

0.17

𝜌𝛽𝑣
2 [𝐹(𝛽𝑣) − 4.31] 

𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
=

0.17

( 𝑔 ∙ 𝑐𝑚−3) 𝛽𝑣
2 [𝐹(𝛽𝑣) − 4.31] 

0.5 pts 

 

1.4 (a) 

Step 1: Solving for total energy 𝑬, use the equation: 

𝑬 ≡ 𝑬𝑲 + 𝑬𝟎 =  𝑬𝑲 + 𝒎𝟎𝒄𝟐  

where: 

𝐸 is the total energy or the sum of rest-mass energy and kinetic energy 

𝐸𝐾 is the kinetic energy of a particle (at 1, 10, 100 MeV) 

𝐸0 is the rest-mass energy of a particle (for proton, 𝐸0 = 938.27209 𝑀𝑒𝑉 =

1.503280777 × 10−10 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2) 

𝑚0 is the rest-mass of a particle (for proton, 𝑚0 = 1.67262 × 10−27 𝑘𝑔) 

𝑐 is the speed of light (𝑐 = 299 792 458 𝑚 ∙ 𝑠−1) 
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Conversion: 

1 𝑀𝑒𝑉 = 1 × 106 𝑒𝑙𝑒𝑐𝑡𝑜𝑛 𝑣𝑜𝑙𝑡𝑠 (𝑒𝑉) = 1.60218 × 10−13 𝑗𝑜𝑢𝑙𝑒𝑠 (𝐽)𝑜𝑟 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 

1 𝑒𝑉 = 1.60218 × 10−19 𝑗𝑜𝑢𝑙𝑒𝑠 (𝐽) 𝑜𝑟 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 

Solving for total energy, 𝐸 

At 𝐸𝐾 = 1 𝑀𝑒𝑉, 𝐸 = 1 𝑀𝑒𝑉 + 938.27209 𝑀𝑒𝑉 = 939.27209 𝑀𝑒𝑉 = 1.504882957 × 10−10 𝑘𝑔 ∙

𝑚2 ∙ 𝑠−2 

At 𝐸𝐾 = 10 𝑀𝑒𝑉, 𝐸 = 10 𝑀𝑒𝑉 + 938.27209 𝑀𝑒𝑉 = 948.27209 𝑀𝑒𝑉 = 1.519302577 ×

10−10 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 

At 𝐸𝐾 = 100 𝑀𝑒𝑉, 𝐸 = 100 𝑀𝑒𝑉 + 938.27209 𝑀𝑒𝑉 = 1038.27209 𝑀𝑒𝑉 = 1.663498777 ×

10−10 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 

 

Step 2: Using the relativistic energy-momentum relation for a particle: 

𝑬𝟐 =  (𝒎𝟎𝒄𝟐)𝟐 + (𝒑𝒄)𝟐 

To solve for 𝑝𝑐: 𝒑𝒄 =  √𝑬𝟐 − 𝑬𝟎
𝟐 

At 𝐸 = 939.27208943 𝑀𝑒𝑉 = 1.504879791 × 10−10 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2, 𝑝𝑐 = 43.33063789 𝑀𝑒𝑉 =

6.942348142 × 10−12 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 

At 𝐸 = 948.27208943 𝑀𝑒𝑉 = 1.519299381 × 10−10 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2, 𝑝𝑐 = 137.3515264 𝑀𝑒𝑉 =

2.200618685 × 10−11 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 

At 𝐸 = 1038.27208943 𝑀𝑒𝑉 = 1.663495277 × 10−10 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2, 𝑝𝑐 = 444.5834207 𝑀𝑒𝑉 =

7.123026650 × 10−11 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 

 

Step 3: Using the equation: 𝜷𝒗 ≡
𝒗

𝒄
=

𝒑𝒄

𝑬
  to solve for velocity: 𝒗 =

𝒑𝒄𝟐

𝑬
 

where:  

𝑣 is the velocity of a particle 

𝑝 is the momentum of a particle 

At 𝑝𝑐 = 43.33063788 𝑀𝑒𝑉, 𝑣 = 0.046132147𝑐 = 13,830,070 𝑚 ⋅ 𝑠−1 

At 𝑝𝑐 = 137.3515263 𝑀𝑒𝑉, 𝑣 = 0.144844004𝑐 = 43,423,140 𝑚 ⋅ 𝑠−1 

At 𝑝𝑐 = 444.5834206 𝑀𝑒𝑉, 𝑣 = 0.428195485𝑐 = 128,369,777 𝑚 ⋅ 𝑠−1 
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1.4 (a) 𝑎𝑡 1 𝑀𝑒𝑉, 𝑣 = 0.046 𝑐 = 1.38 × 107 𝑚 ⋅ 𝑠−1 
 

𝑎𝑡 10 𝑀𝑒𝑉, 𝑣 = 0.145 𝑐 = 4.34 × 107 𝑚 ⋅ 𝑠−1 
 

𝑎𝑡 100 𝑀𝑒𝑉, 𝑣 = 0.428 𝑐 = 1.28 × 108 𝑚 ⋅ 𝑠−1 

0.25 pts 

0.25 pts 

0.25 pts 

 

1.4 (b) 

Step 1: Calculate 𝐹(𝛽) using the Bethe equation: 𝑭(𝜷𝒗) = 𝒍𝒏
𝟏.𝟎𝟐 × 𝟏𝟎𝟔𝜷𝒗

𝟐

𝟏−𝜷𝒗
𝟐 −  𝜷𝒗

𝟐 

At 𝛽𝑣
2 = 0.0461321472 = 0.002128175, 𝐹(𝛽𝑣) = 7.682824962 

At 𝛽𝑣
2 = 0.1448440042 = 0.020979785, 𝐹(𝛽𝑣) = 9.971340488 

At 𝛽𝑣
2 = 0.4281954852 = 0.183351373, 𝐹(𝛽𝑣) = 12.158157270 

 

Step 2: Using the derived formula for mass stopping power: 

𝑺

𝝆
= − 

𝒅𝑬

𝝆𝒅𝒙
=

𝟎. 𝟏𝟕𝟎

𝝆𝜷𝒗
𝟐

[𝑭(𝜷𝒗) − 𝟒. 𝟑𝟏] 

At 𝐹(𝛽𝑣) = 7.682824962, 
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 269.423451250 𝑀𝑒𝑉 ∙  𝑐𝑚2  ∙ 𝑔−1   = 4.316648651 ×

10−12 𝐽 ∙ 𝑚2 ∙ 𝑘𝑔−1 

At 𝐹(𝛽𝑣) = 9.971340488,  
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 45.874057356 𝑀𝑒𝑉 ∙  𝑐𝑚2  ∙ 𝑔−1 = 7.349849721 ×

10−13 𝐽 ∙ 𝑚2 ∙ 𝑘𝑔−1 

At 𝐹(𝛽𝑣) = 12.158157271,  
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 7.276666183 𝑀𝑒𝑉 ∙  𝑐𝑚2  ∙ 𝑔−1 = 1.165852903 ×

10−13 𝐽 ∙ 𝑚2 ∙ 𝑘𝑔−1 

1.4 (b) 
𝑎𝑡 1 𝑀𝑒𝑉,

𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 269 𝑀𝑒𝑉 ∙  𝑐𝑚2  ∙ 𝑔−1 

𝑎𝑡 10 𝑀𝑒𝑉,
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 45.9 𝑀𝑒𝑉 ∙  𝑐𝑚2  ∙ 𝑔−1 

𝑎𝑡 100 𝑀𝑒𝑉,
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 7.28 𝑀𝑒𝑉 ∙  𝑐𝑚2  ∙ 𝑔−1 

Other acceptable answers: 

𝑎𝑡 1 𝑀𝑒𝑉,
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 4.32 × 10−12 𝐽 ∙ 𝑚2 ∙ 𝑘𝑔−1 

𝑎𝑡 10 𝑀𝑒𝑉,
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 7.35 × 10−13 𝐽 ∙ 𝑚2 ∙ 𝑘𝑔−1 

𝑎𝑡 100 𝑀𝑒𝑉,
𝑆

𝜌
= − 

𝑑𝐸

𝜌𝑑𝑥
= 1.17 × 10−13 𝐽 ∙ 𝑚2 ∙ 𝑘𝑔−1 

 

0.25 pts 

 

0.25 pts 

 

0.25 pts 
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1.4 (c) 

Using the Bragg-Kleeman formula, the range R of proton in water is calculated given its 

kinetic energy.  

𝑹 = 𝑵𝑹  × 𝑬𝑲
𝜷𝒆 

where: 

𝑅 is the range of a particle, in g·cm-2 

𝑁𝑅 is the proportionality factor (ICRU data for water, 𝑁𝑅 = 0.0023
𝑔

𝑐𝑚2∙𝑀𝑒𝑉
) 

𝐸𝐾  is the kinetic energy of a particle 

𝛽𝑒 is the exponent factor of the incident energy (ICRU data, 𝛽𝑒 = 1.75) 

Solving for 𝑅, 

At 𝐸𝐾  = 1 𝑀𝑒𝑉, 𝑅 = 0.0023 𝑔 · 𝑐𝑚−2 = 0.0023 𝑐𝑚 

At 𝐸𝐾  = 10 𝑀𝑒𝑉, 𝑅 = 0.129338505 𝑔 · 𝑐𝑚−2 = 0.129 𝑐𝑚 

At 𝐸𝐾  = 100 𝑀𝑒𝑉, 𝑅 = 7.273238618 𝑔 · 𝑐𝑚−2 = 7.27 𝑐𝑚 

1.4 (c) 𝑎𝑡 1 𝑀𝑒𝑉, 𝑅 = 0.00230 𝑜𝑟 2.30 × 10−3  𝑐𝑚 
 

𝑎𝑡 10 𝑀𝑒𝑉, 𝑅 = 0.129 𝑜𝑟 𝑜𝑟 1.29 × 10−1 𝑐𝑚 
 

𝑎𝑡 100 𝑀𝑒𝑉, 𝑅 = 7.27 𝑐𝑚 

Other acceptable answers: 

𝑎𝑡 1 𝑀𝑒𝑉, 𝑅 = 0.00230 𝑜𝑟 2.30 × 10−3 𝑔 · 𝑐𝑚−2 

𝑎𝑡 10 𝑀𝑒𝑉, 𝑅 = 0.129 𝑜𝑟 𝑜𝑟 1.29 × 10−1 𝑔 · 𝑐𝑚−2 

𝑎𝑡 100 𝑀𝑒𝑉, 𝑅 = 7.27 𝑔 · 𝑐𝑚−2 

0.25 pts 

0.25 pts 

0.25 pts 

 

1.4 (d) 

1.4 (d) 

 
 

0.3 pts 
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The mass stopping power decreases, whereas the range of proton 

increases with increasing proton energy. 

 

Note: ACCEPT answer even if: 

(1) Unit of Energy is in joules (J). 

(2) Energy (1,10,100 MeV) is not graphed to the appropriate scale. 

(3) Log10 of energy values is used in the graph. 

(4) Obtained values (stopping power & range) are graphed with 

proton energy separately. 

 

0.2 pts 

 

1.5 

Dose to the medium (water) can be calculated by the residual range method. After 

traveling 5.491 cm, the protons have enough energy to travel the residual range of: 

𝑹𝒓𝒆𝒔 = 𝑹𝑪𝑺𝑫𝑨 − 𝒕𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 = 7.718 𝑔 ∙ 𝑐𝑚−2 − 5.491 𝑔 ∙ 𝑐𝑚−2 = 2.227 𝑔 ∙ 𝑐𝑚−2 

 

Table1: Proton Stopping Power and Range (in Water, Liquid) 

Kinetic Energy  

(MeV) 

S, total 

(MeV-cm2 g-1) 

Range, CSDA 

(g cm-2) 

5.000E+01 1.245E+01 2.227E+00 

5.500E+01 1.154E+01 2.644E+00 

6.000E+01 1.078E+01 3.093E+00 

6.500E+01 1.013E+01 3.572E+00 

7.000E+01 9.559E+00 4.080E+00 

7.500E+01 9.063E+00 4.618E+00 

8.000E+01 8.625E+00 5.184E+00 

8.500E+01 8.236E+00 5.777E+00 

9.000E+01 7.888E+00 6.398E+00 

9.500E+01 7.573E+00 7.045E+00 

1.000E+02 7.289E+00 7.718E+00 

  Source: https://physics.nist.gov/cgi-bin/Star/ap_table-t.pl 

 

The energy that has this range of 2.227 g/cm2 is 50 MeV, which is the average energy at 

the exit. Thus, 𝐸𝑎𝑏𝑠 = 100 𝑀𝑒𝑉 − 50 𝑀𝑒𝑉 = 50 𝑀𝑒𝑉 

Using the equation: 𝑫 =
𝑬𝒂𝒃𝒔

𝒎 
=

(𝒅𝑬 𝒅𝒙⁄ ) × 𝒅𝒙 × 𝑵𝒑

𝝆 × 𝑨 × 𝒅𝒙
= 𝚽

𝒅𝑬

𝝆𝒅𝒙
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𝐷 =
(1 × 109 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 𝑐𝑚2⁄ ) (50 𝑀𝑒𝑉 𝑝𝑟𝑜𝑡𝑜𝑛)⁄

(1 𝑔 𝑐𝑚3⁄ )(5.491 𝑐𝑚)
× 106 𝑒𝑉 × 1.60218 × 10−19 𝐽 × 103 

𝐷 = 1.458914588 
𝐽

𝑘𝑔
(𝑜𝑟 𝐺𝑦) 

1.5 
𝐷 = 1.46 

𝐽

𝑘𝑔
 (𝑜𝑟 𝐺𝑦) 

 

Other acceptable answer: 

𝐷 = 9.11 × 109  
𝑀𝑒𝑉

𝑔
 

0.75 pts 

 

Part 2. Proton Therapy (5.0 pts) 

2.1 

2.1 (a)   

 

0.3 pts 

 

2.1 (b) 

Explanation: The rate of energy loss is proportional to the square of the particle charge 

and inversely proportional to the square of velocity. 

2.1 (b)  FALSE 0.3 pts 
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2.1 (c) 

Explanation: The relatively high exit dose from photon therapy limits the possibility of 

dose escalation or acceleration for tumors. In contrast, a proton beam is composed of 

charged particles (protons) with a well-defined range of penetration into tissue. Studies 

estimated proton fields could reduce approximately 50% of the irradiation dose to 

adjacent normal tissue compared with photon beams. Thus, proton therapy is ideal when 

organ preservation is a priority. 

2.1 (c)  TRUE 0.3 pts 

 

2.1 (d)  D. 235 MeV 

 

Other acceptable answers:  

D or 235 MeV 

0.3 pts 

 

2.2 

Starting from Eq. [7]: 𝜷𝒙𝑫𝒙
𝟐 +  𝜶𝒙𝑫𝒙 − 𝜶𝒑𝑫𝒑 − 𝜷𝒑𝑫𝒑

𝟐 = 𝟎 

where: 

a = 𝛽𝑥 

b = 𝛼𝑥 

c = −𝛼𝑝𝐷𝑝 − 𝛽𝑝𝐷𝑝
2 

Use the quadratic formula to solve for RBE 𝑜𝑟 (
𝐷𝑥

𝐷𝑝
) given the ff. expressions: 

𝑹𝑩𝑬𝒎𝒂𝒙 =  
𝜶𝒑

𝜶𝒙
 

𝑹𝑩𝑬𝒎𝒊𝒏 =  √
𝜷𝒑

𝜷𝒙
 

𝑥 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

𝐷𝑥 =

−𝛼𝑥 + √𝛼𝑥
2 − 4𝛽𝑥(−𝛼𝑝𝐷𝑝 − 𝛽𝑝𝐷𝑝

2)

2𝛽𝑥
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𝑅𝐵𝐸 =
𝐷𝑥

𝐷𝑝
=

−𝛼𝑥 + √𝛼𝑥
2 − 4𝛽𝑥(−𝛼𝑝𝐷𝑝 − 𝛽𝑝𝐷𝑝

2)

2𝛽𝑥𝐷𝑝
 

𝑅𝐵𝐸 =
𝐷𝑥

𝐷𝑝
=

− 
𝛼𝑥
𝛽𝑥

+ √
𝛼𝑥

2

𝛽𝑥
2 +

4𝛽𝑥𝛼𝑝𝐷𝑝

𝛽𝑥
2 +

4𝛽𝑥𝛽𝑝𝐷𝑝
2

𝛽𝑥
2

2𝐷𝑝
 

𝑅𝐵𝐸 =
𝐷𝑥

𝐷𝑝
=

− (
𝛼
𝛽

)
𝑥

+ √(
𝛼
𝛽

)
𝑥

2

+
4𝛽𝑥(𝛼𝑥 𝑅𝐵𝐸𝑚𝑎𝑥)𝐷𝑝

𝛽𝑥
2 +

4𝛽𝑥(𝛽𝑥𝑅𝐵𝐸𝑚𝑖𝑛
2 )𝐷𝑝

2

𝛽𝑥
2

2𝐷𝑝
 

𝑅𝐵𝐸 =
𝐷𝑥

𝐷𝑝
=

√(
𝛼
𝛽

)
𝑥

2

+ 4𝐷𝑝 (
𝛼
𝛽

)
𝑥

𝑅𝐵𝐸𝑚𝑎𝑥 + 4𝐷𝑝
2𝑅𝐵𝐸𝑚𝑖𝑛

2 − (
𝛼
𝛽

)
𝑥

2𝐷𝑝
 

2.2  

𝑅𝐵𝐸 =
𝐷𝑥

𝐷𝑝
=

√(
𝛼
𝛽

)
𝑥

2

+ 4𝐷𝑝 (
𝛼
𝛽

)
𝑥

𝑅𝐵𝐸𝑚𝑎𝑥 + 4𝐷𝑝
2𝑅𝐵𝐸𝑚𝑖𝑛

2 −  (
𝛼
𝛽

)
𝑥

2𝐷𝑝
 

1.0 pts 

 

2.3 (a) 

Solve for 𝑅𝐵𝐸𝑚𝑎𝑥 and 𝑅𝐵𝐸𝑚𝑖𝑛 using the provided equations below: 

𝑹𝑩𝑬𝒎𝒂𝒙 = 𝒑𝟎 +
𝒑𝟏

(𝜶/𝜷)𝒙
𝑳𝑬𝑻𝒅 

𝑹𝑩𝑬𝒎𝒊𝒏 = 𝒑𝟐 + 𝒑𝟑  √(
𝜶

𝜷
)

𝒙

𝑳𝑬𝑻𝒅 

where p0-3 are the fit parameters for the LQ model.  

𝑝0 = 0.999064 

𝑝1 = 0.35605 𝐺𝑦 (𝐾𝑒𝑉 𝜇𝑚)−1  

𝑝2 = 1.1012 

𝑝3 = 0.0038703 𝐺𝑦−1/2 (𝐾𝑒𝑉 𝜇𝑚)−1 

𝑹𝑩𝑬𝒎𝒂𝒙 = 𝟎. 𝟗𝟗𝟗𝟎𝟔𝟒 +
𝟎. 𝟑𝟓𝟔𝟎𝟓 𝑮𝒚 𝑲𝒆𝑽µ𝒎−𝟏 

(𝜶/𝜷)𝒙
𝑳𝑬𝑻𝒅 

𝑹𝑩𝑬𝒎𝒊𝒏 = 𝟏. 𝟏𝟎𝟏𝟐 + 𝟎. 𝟎𝟎𝟑𝟖𝟕𝟎𝟑 𝑮𝒚−𝟏/𝟐𝑲𝒆𝑽µ𝒎−𝟏
√(

𝜶

𝜷
)

𝒙

𝑳𝑬𝑻𝒅 
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Cell lines (𝜶/𝜷)𝒙 Gy 

HaCat 15.0 

SKMel 3.0 

 

𝑳𝑬𝑻𝒅 
HaCat SKMel 

𝑹𝑩𝑬𝒎𝒂𝒙 𝑹𝑩𝑬𝒎𝒊𝒏 𝑹𝑩𝑬𝟐𝑮𝒚 𝑹𝑩𝑬𝒎𝒂𝒙 𝑹𝑩𝑬𝒎𝒊𝒏 𝑹𝑩𝑬𝟐𝑮𝒚 

1.9 1.044164 1.129680 1.06 1.224562 1.113937 1.16 

2.5 1.058406 1.138674 1.08 1.295772 1.117959 1.19 

4.5 1.105879 1.168653 1.12 1.533139 1.131366 1.29 

 

2.3 (a)  HaCat 

 

 

 

 

 

 

SKMel 

 

 

 

 

 

 

𝐿𝐸𝑇𝑑 𝑅𝐵𝐸2𝐺𝑦 

1.9 1.06 

2.5 1.08 

4.5 1.12 

𝐿𝐸𝑇𝑑 𝑅𝐵𝐸2𝐺𝑦 

1.9 1.16 

2.5 1.19 

4.5 1.29 

0.6 pts 

(0.2 pt 

each) 

 

 

 

 

 

0.6 pts 

(0.2 pt 

each) 

 

 

2.3 (b)  𝑅𝐵𝐸 increases with increasing 𝐿𝐸𝑇𝑑.  
 

Higher (or lower) 𝑅𝐵𝐸 values can be expected for tissues with 

low (or high) (𝛼/𝛽)𝑥 given similar 𝐿𝐸𝑇𝑑 values. 

0.2 pts 

0.2 pts 

 

2.3 (c) Solve for 𝐷𝑥 given the obtained values for 𝑅𝐵𝐸 at 𝑫𝒑 = 𝟐 𝑮𝒚. 

𝑫𝒙 = 𝑹𝑩𝑬 × 𝑫𝒑 

2.3 (c) 
 

HaCat 

𝐿𝐸𝑇𝑑 𝐷𝑥 (𝐺𝑦) 

1.9 2.13 

2.5 2.15 

0.6 pts 

(0.2 pt 

each) 
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4.5 2.24 

 

SKMel 

𝐿𝐸𝑇𝑑 𝐷𝑥 (𝐺𝑦) 

1.9 2.32 

2.5 2.38 

4.5 2.57 
 

 

 

0.6 pts 

(0.2 pt 

each) 
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Q4 Mass and Abundance of Isotopes (10 pts) 

Part 1.  Basic operation of a Mass Spectrograph (2.1 pts) 

1.1 Increase in kinetic energy: 

Δ𝐾 = 𝑞𝑉𝑎 = (1.60218 × 10−19C)(1.20 × 103V) 

=  1.92 × 10−16 J  

1.1  1.92 × 10−16 J 

Accept 1.91 – 1.93 

0.3 pts 

 

1.2.  The velocity is determined obtained from the kinetic energy: 

𝐾 =
1

2
𝑚𝑣2 → 𝑣 = √

2𝐾

𝑚
   

𝑣 = √
2( 1.923×10−16 J)

12×1.66057×10−27kg
= 1.389 × 105 m/s  

1.2 
1.40 × 105 m/s 

Accept 1.3 – 1.5 
0.4 pts 

  

1.3 (a) Electric force acting on the ion is in the upward direction.  The magnetic force on 

the ion must be in the downward direction (and equal to the electric force) for the ion to 

travel along a straight line.  Therefore, B1 must be in the oz direction. 

1.3. (a) 𝑜𝑧 direction 0.3 pts 

   

1.3 (b) For the ions to travel along a straight line: 

  Force due to electric field (𝐹 = 𝑞𝐸) = Force due to magnetic field (𝐹 = 𝑞𝑣𝐵1 

  𝑞𝐸 = 𝑞𝑣𝐵1 ; since 𝐸 =
𝑉

𝑑
, we get: 

  
𝑉𝑠

𝑑
= 𝑣𝐵1,  𝐵1 =

𝑉𝑠

𝑣𝑑
=

400 J/C

(140×103m/s)(2×10−2m)
= 0.14 T 

1.3 (b) 
0.14 T 

Accept 0.13 – 0.15 
0.7 pts 
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1.3 (c) According to the equations in part 1.3 (b), velocity depends only on the external 

electric field and the applied magnetic field in the velocity selector.  Therefore, velocity of 

the doubly charged ions is also 140.0 km/s. 

1.3 (c) 
140.0

km

s
 

Accept 140 km/s also as a correct answer. 

0.4 pts 

 

Part 2.  Motion of ions inside the ion separator (3.2 pts) 

2.1 If the radius of the circular path of the ion inside the ion separator is 𝑅, 

𝐵2𝑒𝑣 =
𝑚𝑣2

𝑅
  

𝑅 =
𝑚𝑣

𝐵2𝑒
=

(12 × 1.66057 × 10−27kg)(140 × 103m/s)

(0.030 T)(1.60218 × 10−19C)
= 0.580 m = 58.0 cm 

Thus, the ion hits the photographic plate at a distance of 116 cm from the center (P). 

2.1 116 cm or 1.16 m 

Accept 1.15 m – 1.17 m as correct 

0.7 pts 

  

2.2 If 𝑥 is the distance to the incident point of the ion from P on the photographic plate: 

𝑥 = 2𝑅 =
2𝑚𝑣

𝐵2𝑒
 

It is clear that the velocity 𝑣 depends only on electric and magnetic fields applied in the 

velocity selector.  Therefore, if the uncertainties related to electric field and magnetic 

fields are negligible, 

(Δ𝑚)𝑚𝑖𝑛 =
𝐵2𝑒

2𝑣
(Δ𝑥) =

(0.030 T)(1.60218 × 10−19C)

2 (140.0 ×
103m

s )

(10−3 m) 

= 1.717 × 10−29 kg (
1u

1.66057 × 10−27kg
 

) = 0.01 u 

2.2 0.01 u 1.0 pt 

  

 2.3 The ion beam produced in the ion source contains both singly and doubly ionized 

C 
12  atoms.  Their paths are shown below: 
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2.3 

 

 

 

For correct direction for both ions (with identification) 

For correct dimensions for both ions 

Note: Look for the following when awarding marks 

            1. Shape of the curves must be a semi-circle, approximately. 

            2. Acceptable range for the points of incidence are marked 

with { symbol.  Do not award marks for correct dimensions if the 

points of incidence are outside.  

 

 

 

 

 

 

 

 

 

 

 

0.6 pts 

0.6 pts 

 

  

Part 3: Mass spectrometers (1.6 pts) 

3.1 We can use the same equation 𝑥 = 2𝑅 =
2𝑚𝑣

𝐵2𝑒
  obtained in part 2.2, but here we have 

fixed 𝑥 and variable 𝐵2.  We get the expression for 𝑚 from the above expression: 

𝑚 =
𝐵2𝑒𝑥

2𝑣
 

For 𝐵2 =  20 mT: 

 𝑚min =
(20×10−3 T)(1.60218×10−19C)(0.8m)

2(140×103m.𝑠−1)
= 9.15531 × 10−27 kg (

1u

1.66057×10−27kg
 

) = 5.51 u   

Similarly, for 𝐵2 = 320 mT; 

 𝑚max =
(320×10−3 T)(1.60218×10−19C)(0.8m)

2(140×103m.𝑠−1)
= 1.46485 × 10−25 kg (

1u

1.66057×10−27kg
 

) = 88.2 u 

Therefore, elements from Li (atomic mass~6 u) to Zr (atomic mass~87 u) can be analyzed 

with this spectrometer. 

[Note: Identification of elements cannot be done exactly because of the overlapping of 

the atomic masses of the isotopes of different elements] 
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3.1 𝑚𝑚𝑖𝑛 = 5.51 u 

Accept 5.50-5.52 

𝑚𝑚𝑎𝑥 = 88.2 u 

Accept 88.1 – 88.3 

0.5 pts 

0.5 pts 

 

3.2 Because the electric current represents the total charge that passes through the exit 

slit per unit time, 

 
𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 C 

12

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 C 
13 =

16.5

185×10−3 = 89.19 

3.2 89.19 or 89.2 

No range can be given because this is a simple ratio. 

0.6 pts 

 

Part 4: Determining the age of rock samples (3.4 pts) 

4.1 (a) The relationship between 𝑁𝑃(𝑡0), 𝑁𝐷(𝑡0), 𝑁𝑃(𝑡1) and 𝑁𝐷(𝑡1) is expressed below: 

4.1 (a) 𝑁𝑃(𝑡0)𝑒−𝜆(𝑡1−𝑡0) + 𝑁𝐷(𝑡1) = 𝑁𝑃(𝑡0) +  𝑁𝐷(𝑡0) 

(or 𝑁𝐷(𝑡1) = 𝑁𝑃(𝑡0)[1 − 𝑒−𝜆(𝑡1−𝑡0)] + 𝑁𝐷(𝑡0) or any other correct 

form) 

0.4 pts 

 

4.1 (b) From the radioactive decay law 𝑁𝑃(𝑡1) = 𝑁𝑃(𝑡0)𝑒−𝜆(𝑡1−𝑡0) and substituting this in 

the equation obtained in 4.1 (a): 

  𝑁𝑃(𝑡1) + 𝑁𝐷(𝑡1) = 𝑁𝑃(𝑡1)𝑒𝜆(𝑡1−𝑡0) + 𝑁𝐷(𝑡0) 

  𝑁𝐷(𝑡1) = 𝑁𝑃(𝑡1)[𝑒𝜆(𝑡1−𝑡0) − 1] + 𝑁𝐷(𝑡0) 

  By dividing the entire equation by 𝑁𝐷𝑠
(𝑡1),  

  
𝑁𝐷(𝑡1)

𝑁𝐷𝑠(𝑡1)
=

𝑁𝑃(𝑡1)

𝑁𝐷𝑠(𝑡1)
[𝑒𝜆(𝑡1−𝑡0) − 1] +

𝑁𝐷(𝑡0)

𝑁𝐷𝑠(𝑡0)
 

  Therefore, 𝐺 = [𝑒𝜆(𝑡1−𝑡0) − 1] 

  Note that because the element Ds is stable 𝑁𝐷𝑠
(𝑡1) = 𝑁𝐷𝑠

(𝑡0). 

4.1 (b) 𝐺 = [𝑒𝜆(𝑡1−𝑡0) − 1] 0.7 pts 

 

4.2 (a) Based on the current measurements given in Table 01, the entries in Table 02 are 

determined as follows: 
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4.2 (a) Table 1. Nuclide ratios for the rock samples 

Rock 

Sample 

𝑁( Rb 
87 )

𝑁( Sr 
86 )

 
𝑁( Sr 

87 )

𝑁( Sr 
86 )

 

1 2.51 0.864 

2 0.50 0.736 

3 1.74 0.804 

4 4.11 0.956 
 

0.8 pts 

(0.1 pt for 

each entry) 

 

4.2 (b) 

 

For the selection of the correct axes                                           0.2 pts 

For the correct marking of the points (0.1/each)                     0.4 pts 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 (c) Gradient = 0.0617 

     Accept the values in the range  0.060 to 0.064 

0.3 pts 

 

4.2 (d) From the given half-life, 𝜆 =
0.693

4.8×1010  𝑦𝑟−1 = 1.44 × 10−11 𝑦𝑟−1 

Gradient = [𝑒𝜆(𝑡1−𝑡0) − 1] = 0.0617 

        𝑒𝜆(𝑡1−𝑡0) = 1.0617 

Therefore age of the rock samples =(𝑡1 − 𝑡0) =
ln(1.0617}

1.44×10−11  𝑦 

     = 4.15 × 109 𝑦𝑒𝑎𝑟𝑠 ~ 4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟𝑠 

     = 4.15 × 109 𝑦𝑒𝑎𝑟𝑠 ~ 4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟𝑠 
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4.2 (d) 4.15 × 109 𝑦𝑒𝑎𝑟𝑠 ~ 4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑦𝑒𝑎𝑟𝑠 

Acceptable range 4.0 to 4.3 billion years. 

Warning: There is a possibility that students writing the answer 

here without calculating.  It is impossible that he/she gets the 

correct answer if his/her answer to 4.2(c) is wrong.  Therefore, do 

not award marks for this part if his/her answer to 4.2(c) is 

wrong.  

0.6 pts 
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Q5 ADVANTAGES OF USING LOW ENRICHED 

URANIUM IN NUCLEAR REACTORS (10 pts) 

Note: Answer key demonstrates the solution process from formula derivation up to 

substitution of given values. For brevity, the results of intermediate calculations are 

presented in an arbitrary number of significant figures. 

For the boxed results containing numeric answers, three values are given: low value, 

exact value, high value. Exact value is the result obtained when computations are 

performed starting from the problem given without rounding-off until final answer. The 

low and high value corresponds to ±5% of the exact value. Numerical results ranging 

from the low value up to the high value are considered correct regardless of how 

many significant figures are presented. This was done to accommodate examinee 

solutions implementing the correct process but failed to follow the instruction not to 

truncate in intermediate calculations. 

Part 1. Uranium Enrichment (3.5 pts) 

1.1a 

We first get the conservation of the mass of the total Uranium content, given the mass of 

the product MP, mass of the feed MF, and the mass of the tail MT. We know that the feed 

is put into the enrichment plant and after the whole process, we have the enriched 

product and the depleted uranium (tail). We can then write the first conservation of mass 

equation as  

MF = MP + MT (1.1) 

 

Next is that the total U-235 content is the same. As defined, x is the enrichment of U-235 

in weight fraction, this means that the U-235 content in the feed is given by xFMF,        and 

same for the enriched product and tail. We can now write the conservation of mass of 

the U-235 as 

xFMF = xPMP + xTMT (1.2) 

 

1.1a (i) 

MF = MP + MT 

(ii) 

xFMF = xPMP + xTMT 

0.05 pt 

 

0.05 pt 
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1.1b 

Using the results of 1.1a, we can isolate MT  

MF = MP + MT → MT = MF − MP (1.3) 

and  

xFMF
= xPMP + xTMT → xTMT = xFMF  − xPMP (1.4) 

xTMT = xFMF − xPMP → MT =
xFMF − xPMP

xT
 (1.5) 

Using equations (1.3) and (1.5), we get 

MF − MP =
xFMF − xPMP

xT
 (1.6) 

xTMF − xTMP = xFMF − xPMP (1.7) 

xTMF − xFMF = xTMP − xPMP (1.8) 

(xT − xF)MF = (xT − xP)MP (1.9) 

Finally, isolating either MP or MF, we get, 

MF =
xT − xP

xT − xF
MP =  

xP − xT

xF − xT
MP (1.10) 

or 

MP =
xT − xF

xT − xP
MF  =  

xF − xT

xP − xT
MF  (1.11) 

 

1.1b MF =
xT − xP

xT − xF
MP 

MF =  
xP − xT

xF − xT
MP 

MP =
xT − xF

xT − xP
MF 

MP =  
xF − xT

xP − xT
MF  

 

Any of the 4 possible answers will merit full credit (0.3 pt) 

0.3 pt 

 

1.2 

Using the result from 1.1b, 

M235 = xPMP → MP =
M235

xP
 (1.12) 
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MF =
xP − xT

xF − xT

M235

xP
 (1.13) 

We are given the values of xT = 0.00200 and xF = 0.00720 and by substituting these 

values, we get, 

MF =
xP − 0.00200

0.00720 − 0.00200

M235

xP
=

xP − 0.00200

0.00520

M235

xP
 (1.14) 

For a), xP = 0.03,  

MF =
0.03000 − 0.00200

0.00520

M235

0.03000
 (1.15) 

MF = 179.48718 M235 

 
(1.16) 

For b), xP = 0.197, 

MF =
0.19700 − 0.00200

0.00520

M235

0.19700
 (1.17) 

MF = 190.35533 M235 

 
(1.18) 

1.2a  

Low Value Exact Value High Value 

170.5 M235 179.5 M235 188.5 M235 

Or 

Low Value Exact Value High Value 

170.5 179.5 188.5 
 

0.5 pt 

 

1.2b  

Low Value Exact Value High Value 

180.8 M235 190.4 M235 199.9 M235 

Or 

Low Value Exact Value High Value 

180.8 190.4 199.9 
 

0.5 pt 

 

1.3a 

We are given the values xT = 0.00200, xF = 0.00720, and MF = 1000 kg. We are also given 

the follow values for xP: 1.0%, 3.0%, 10.0%, 20.0%, 50.0%, 90.0%. We first calculate for the 

corresponding mass of the product MP using the result of problem 1.1b.   

xP MP xP MP 

1.0% 650.00000 20.0% 26.26263 
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3.0% 185.41729 50.0% 10.44177 

10.0% 53.06112 90.0% 5.79065 

 

Next step is to calculate for the corresponding values from the value function.  

V(xT) = V(0.00200) = 6.18776 (1.19) 

V(xF) = V(0.00720) = 4.85551 (1.20) 

  

xP V(xP) xP V(xP) 

1.0% 4.50322 20.0% 0.83178 

3.0% 3.26753 50.0% 0.00000 

10.0% 1.75778 90.0% 1.75778 

 

To get the final answers, we use equation 1 of the problem to get the value for each 

enrichment value for the product. 

SWU(1.0%) = MP[V(1.0%) − V(0.002)] − MF[V(0.0072) − V(0.002)] (1.21) 

SWU(1.0%) = 650[V(1.0%) − V(0.002)] − 1000[V(0.0072) − V(0.002)] (1.22) 

SWU(1.0%) = 650[4.50322 −  4.85551] − 1000[4.85551 −  6.18776] (1.23) 

SWU(1.0%) = −1094.95100 − (−1332.25000)  =  237.29900 (1.24) 

Following the same process for the other enrichment percentage, we get, 

1.3a  

𝐱𝐏 
𝐒𝐖𝐔 

Low Value Exact Value High Value 

1.0% 225.4 237.3 249.2 

3.0% 750.4 789.9 829.4 

10.0% 1042 1097 1152 

20.0% 1132 1192 1251 

50.0% 1204 1268 1331 

90.0% 1241 1307 1372 
 

1.2 pt 

 

0.2 pt 

per 

answer 

for a 

given 

𝑥𝑃 

 

1.3b 
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We take the values from problem 1.3a and plot the value of the separative work units by 

their enrichment.  

1.3b 

 

 

Grading Rubric: 

  

Case for 0.6 pt:  

• All answers to problem 1.3a are correct and data points 

placed appropriately.   

 

Case for 0.4 pt: 

• Correct trend of steep climb from 0 to 0.2 weight fraction 

then gradual increase thereafter. Acceptable even without 

dots/markers. Acceptable even if the y-axis range is missing 

or incorrect. 

 

Case for 0.2 pt: 

• Examinee wrote values in y-axis regardless of the range . 

 

0.6 pt 

 

1.3c Difficult for enrichment plants to achieve enrichment from a 

lower percentage up to the 20% mark. After the 20% mark, we 

0.3 pt 
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can see that a lesser amount of work is needed to get to the 

higher enrichment values.  

 

Or  

 

More work to enrich from low percentage up to 20% than 

increasing beyond 20% to higher enrichment level. 

 

Grading Rubric: 

 

Full credit is given when any of the following thoughts are 

expressed: 

• More effort required to enrich from low value up to 0.2 

weight fraction (20% enrichment) 

• Less effort required to enrich above 0.2 weight fraction 

(20% enrichment) 

 

Part 2. Energy from 235U and 238U (4.0 pts) 

2.1 

Given the total net power of the nuclear reactors of the hypothetical region:  

Total Net Power = 5708 𝑀W 

Let n be the number of fissions per second. The recoverable energy that is eventually 

converted into electricity can be calculated as follows, noting the 5% of the total energy 

that is carried away by neutrinos, and the 30% thermal conversion efficiency:  

So available thermal energy per second

= energy released per fission × recoverable fraction × n

× Elementary charge 

= 200 × (1 − 0.05) × n × 1.602 × 10−13 J 

Electrical power can be obtained noting the 30% thermal conversion efficiency of the 

nuclear power plants: 

Total Net Power = 200 × (1 − 0.05) × n × 1.602 × 10−13 × 0.3

= 9.1314 × 10−12 × n  

 

9.1314 × 10−12 × n = 5.708 × 109 W 
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n = 6.250 × 1020
fissions

sec
 

 

Total number of neutrons produced in a year can be obtained from the neutron 

multiplicity (𝜈𝑓 = 2.6), and the number of fission events in a year. 

  

Total No of Neutrons produced in one year

= 6.250 × 1020
fissions

sec
× 365

days

year
× 86400

sec

days
× 2.6

= 6.250 × 1020
fissions

sec
× 3.154 × 107

sec

year
× 2.6 

= 5.125 × 1028 

 

Noting the problem given that 20% of the fission neutrons are used to convert 238U to 
239Pu: 

 

Neutrons absorbed in U  
238 in resonance = 5.125 × 1028 × 0.2 = 1.025 × 1028 

 

The 239Pu mass can be estimated using the assumption that the atomic mass value is 

approximated by the mass number: 

Total Plutonium ( Pu  
239 ) Produced in one year =

1.025 × 1028

6.022 × 1023
× 239 

 

Total Plutonium ( Pu  
239 ) Produced in one year = 4068kg 

2.1  

Low Value Exact Value High Value 

3864 kg 4068 kg 4271 kg 
 

0.6 pt 

 

2.2 

2.2a 

Considering the contribution of 239Pu and 238U, only 60% of the fissions are with 235U: 

No of fissions in U  
235 during one year = fraction of fission with U × n × seconds per year 

235  

No of fissions in U  
235 during one year = 0.6 × 6.2507 × 1020

fissions

sec
× 3.154 × 107  

sec

year

= 1.183 × 1028 fissions 

 
235U mass can be estimated using the assumption that the atomic mass value is 

approximated by the mass number: 
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U  
235 consumed in fission =

# of fissions

Avogadros constant
× U  

235 atomic mass

=
1.183 × 1028

6.022 × 1023 1
𝑚𝑜𝑙

× 235 grams/mol = 4615 kg 

2.2a  

Low Value Exact Value High Value 

4384 kg 4615 kg 4846 kg 
 

0.6 pt 

 

2.2b 

Considering that not all neutron absorptions by 235U lead to fission, there is a need to 

account for the probability for fission upon neutron absorption given by the ratio of σf  

and σa  for the specified nuclide. 

Fraction of thermal neutron inducing fission in U92
235 =

𝜎𝑓

𝜎𝑎
=

582.2

680.8
= 0.8552 

The amount of 235U consumed can be obtained by dividing with the probability for fission 

Total U  
235 consumed =

4615

0.8552
= 5396 kg  

2.2b  

Low Value Exact Value High Value 

5127 kg 5396 kg 5666 kg 
 

0.6 pt 

 

2.2c 

The mass of feed material needed can calculated using the formula obtained in part 1.2  

MF =
xP − xT

xF − xT

M235

xP
 

with xT = 0.00200, xF = 0.00720, and xP = 0.035, and M235 being the 235U consumed as 

calculated in part 2.2b 

Total natural uranium used = (
0.035 − 0.002

0.0072 − 0.002
)

5396 

0.035
 = 9.785 × 105 kg 
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2.2c  

Low Value Exact Value High Value 

9.295 × 105 kg 9.785 × 105 kg 1.027 × 106 kg 

Or 

Low Value Exact Value High Value 

929,500 kg 978,500  kg 1,027,000 kg 
 

0.8 pt 

 

2.2d 

Comparison to the Total mass of natural uranium used when considering only 

fissions of 235U (Table 2), direct and indirect fissions in 238U due to fertile conversion 

have saved: 

 

1.631 × 106 − 9.785 × 105 = 6.525 × 105 kg 

 

2.2d  

Low Value Exact Value High Value 

6.199 × 105 kg 6.525 × 105 kg 6.852 × 105 kg 

Or 

Low Value Exact Value High Value 

619,900 kg 652,500 kg 685,200 kg 
 

0.2 pt 

 

2.3 

Mass of 236U is calculated from the difference of consumed and fissioned 235U: 

U  
236 produced in one year = 5396 − 4615 = 781.4 kg 

An alternative way to estimate the 236U produced is via the capture-to-fission ratio: 

α =
σγ

σf
=

680.8 − 582.2

582.2
= 0.17 

Mass of 236U calculated from the capture-to-fission ratio is: 

U  
236 produced in one year =

U(n, γ)  
235 per year

6.02214 × 1023 × 236 =
U(n, f)  

235 per year × α

6.02214 × 1023 × 236

=
1.183 × 1028 × 0.17

6.02214 × 1023 × 236 = 784.9 kg 
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239Pu contributes to 35% of the total number of fission events, therefore the mass of 239Pu 

fissioned can be evaluated as follows: 

No of fissions in Pu  
239 in one year

= fraction of fission with Pu ×  
239 n × seconds per year

= 0.35 × 6.250 × 1020
fissions

sec
× 3.154 × 107

sec

year
 

= 6.899 × 1027 fissions 

239Pu mass can be estimated using the assumption that the atomic mass value is 

approximated by the mass number: 

Pu  
239 fissioned =

6.899 × 1027

6.02214 × 1023 × 239 grams = 2738 kg 

Similar with 235U not all absorptions in 239Pu leads to fission, therefore to obtain the 

amount of 239Pu consumed in the reactor, the probability for fission evaluated as follows 

must be accounted: 

Fraction of thermal neutron inducing fission in Pu94
239 =

σf

σa

=
742.5

1011.3
= 0.7342 

Total Pu  
239 consumed =

2738 

0.7342
= 3729 kg 

Mass of 240Pu produced is the difference between consumption and fission of 239Pu since 

we assumed that the only competing reaction with fission is radiative capture: 

Pu  
240 produced in fuel after one year = 3729 − 2738 = 991.2 kg 

An alternative way to estimate the 240Pu produced is via the capture-to-fission ratio: 

α =
σγ

σf
=

1011.3 − 742.5

742.5
= 0.36 

Pu  
240 produced in one year =

Pu(n, γ)  
239 per year

6.02214 × 1023 × 240 =
Pu(n, f)  

239 per year × α

6.02214 × 1023 × 240

=
6.899 × 1027 × 0.36

6.02214 × 1023 × 240 = 995.3 kg 

2.3 236U 

 

Low Value Exact Value High Value 

742.3 kg 781.4 kg 820.5 kg 

Or 

Low Value Exact Value High Value 

745.7 kg 784.9 kg 824.2 kg 

0.4 pt 

0.8 pt 
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240Pu 

  

Low Value Exact Value High Value 

941.6 kg 991.2 kg 1040.8 kg 

Or 

Low Value Exact Value High Value 

945.6 kg 995.3 kg 1045.1 kg 
 

 

Part 3. Criticality Accident (2.5 pts) 

3.1 

The energy yield can be evaluated given the energy released per fission event and the 

conversion relation to kg of TNT. 

E = Fyield ∙ ϵ = 6 × 1016[fissions] ∙ 200 [
MeV

fission
]

= 1.20 × 1019[MeV] ∙ 1 × 106 [
eV

MeV
] ∙ 1.602 × 10−19 [

J

eV
]

∙   2.390 × 10−7 [kg of TNT] 

3.1  

Low Value Exact Value High Value 

0.4365 kg TNT 0.4595 kg TNT 0.4825 kg TNT 
 

0.5 pt 

 

 

3.2 

Egamma = Cγ  ∙
Fyield ∙ ν̅γ

4πr2
= 3.92[pSv ∙ cm2] ∙ 1 × 10−12 [

Sv

pSv
] ∙

6 × 1016[fission] ∙ 8.58 [
γ

fission]

4π(1.7 × 102[cm2])2
 

3.2  

Low Value Exact Value High Value 

5.279 Sv 5.557 Sv 5.835 Sv 
 

1.0 pt 

 

3.3 



Solution for Q5-12 
THEORY 

 

 

Prepared by the 1st INSO Scientific Committee 

Eneutrons = Cn  ∙
Fyield ∙ ν̅n

4πr2
= 407[pSv ∙ cm2] ∙ 1 × 10−12 [

Sv

pSv
] ∙

6 × 1016[fission] ∙ 2.80 [
n

fission]

4π(1.7 × 102[cm2])2

= 188.3  Sv 

Etotal = Eneutrons + Egamma = 5.557 + 193.8 

3.3 Eneutrons 

 

Low Value Exact Value High Value 

178.9 Sv 188.3 Sv 197.7 Sv 

 

 

Etotal 

 

Low Value Exact Value High Value 

184.1 Sv 193.8 Sv 203.5 Sv 

 

Which type of ionizing Radiation:  

Neutron or Neutrons  

0.6 pt 

0.3 pt 

0.1 pt 

 


