

DEPARTMENT OF SCIENCE AND TECHNOLOGY **PHILIPPINE NUCLEAR RESEARCH INSTITUTE**

COURSE INFORMATION BULLETIN

PNRI/NTC Form 20 Rev. 1/01 June 2022

Course Title	Course on Basic Neutron Science (CBNS)
Duration	Face-to-Face: 10 days (80 hours
Target Participant	For incoming senior undergraduate students taking physics, engineering, or other related course. At least ten (10) participants are required to push through with the course. A maximum of twenty (20) participants will be accepted.
Pre-requisite	A background in algebra, trigonometry, calculus, differential equations, chemistry, electronics, Newtonian mechanics, thermodynamics and statistical physics, modern physics, and material science.
Goal	To enable participants to acquire a sufficient level of understanding/ skills in the following areas: (1) basic radiation and radioactivity concepts; (2) nuclear instrumentation; (3) neutron-induced nuclear reactions; (4) neutron moderation and shielding; (5) neutron flux and dose measurements; (6) modeling and simulation of neutron radiation transport; and (7) neutron applications in different fields.
	At the end of this course, participants are expected to:
Objectives	 Describe the atom's and the nucleus' structure and discuss how radioactivity occurs. Explain the mechanisms involved when different types of radiation interact with matter. Be familiar with instrumentations involved in radiation detection and measurement. Measure photon and neutron radiation using different detectors. Describe neutron properties and explain their interaction mechanisms with matter. Analyze neutron behavior in a given system through measurements and calculations. Be familiar with accelerator-based neutron sources and nuclear reactor technology.
Nature and Scope	 This course consists of lectures, exercises, case studies, and examinations. The course will be conducted by the Nuclear Training Center (NTC) staff, PNRI lecturers, scientists, and technologists. Participant's understanding of the subject matter presented will be assessed through the following: Examination (55%) Development and presentation of a case study (30%) Laboratory experiments and practical exercises (10%) Attendance (5%)
	demonstrates satisfactory knowledge and skills of the subject matter presented.

Commonwealth Avenue, Diliman, Quezon City PO Box 213 UP Quezon City | PO Box932 Manila | PO Box1314 Central, Quezon City Telephone (632) 8929-60-10 to 19 Fax (632) 8920-16-46

CONTACT US

(f) /PNRIDOST ntc@pnri.dost.gov.ph **TO APPLY FOR A COURSE, VISIT:**

https://services.pnri.dost.gov.ph/portal

PNRI.DOST.GOV.PH

DEPARTMENT OF SCIENCE AND TECHNOLOGY PHILIPPINE NUCLEAR RESEARCH INSTITUTE

COURSE INFORMATION BULLETIN

	(1) NTC Online Application; (2) Recommendation Letter to attend the course
Requirements	from the Department Chair; (3) Certified true copy of grades or transcript of
Course Content	1. Atomic Structure and Radioactivity
	2. Interaction of Radiation with Matter
	3. Infroduction to Radiation Protection
	4. Basic Radiation Detection and Instrumentation
	5. Statistics of Counting
	6. Introduction to Gamma Spectrometry Using Nal and HPGe Detectors
	7. Basic Nuclear Physics
	8. Nuclear Reactions
	9. Basic Neutron Physics
	10. Active Neutron Detectors
	11. Neutron Detection by Activation
	12. Neutron Flux and Dose Measurement
	13. Infroduction to Calculation Methods
	14. Infroduction to Accelerator-Based Neutron Sources and Ineir
	Applications
	15. Introduction to Nuclear Reactor Technology
	Experiments:
	1. Nuclear Instrumentation
	2. Gamma Spectrometry with a Nal and High Purity Germanium Detectors
	3. Determination of NORMs in Food and Environmental Samples
	4. Neutron Detection Using Gas-filled Detectors (BF3 and He-3)
	5. Neutron flux measurement with activation detectors
	6. Neutron dose measurement using rem ball and proton recoil scintillator
	Other Activities:
	1. Case Study
	2. Tour of PNRI facilities

Commonwealth Avenue, Diliman, Quezon City PO Box 213 UP Quezon City | PO Box932 Manila | PO Box1314 Central, Quezon City Telephone (632) 8929-60-10 to 19 Fax (632) 8920-16-46

CONTACT US

(f) /PNRIDOST

- ntc@pnri.dost.gov.ph
- PNRI.DOST.GOV.PH

TO APPLY FOR A COURSE, VISIT:

https://services.pnri.dost.gov.ph/portal